Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force.
نویسندگان
چکیده
As a hybrid between a hypodermic needle and transdermal patch, we have used microfabrication technology to make arrays of micron-scale needles that transport drugs and other compounds across the skin without causing pain. However, not all microneedle geometries are able to insert into skin at reasonable forces and without breaking. In this study, we experimentally measured and theoretically modeled two critical mechanical events associated with microneedles: the force required to insert microneedles into living skin and the force needles can withstand before fracturing. Over the range of microneedle geometries investigated, insertion force was found to vary linearly with the interfacial area of the needle tip. Measured insertion forces ranged from approximately 0.1-3N, which is sufficiently low to permit insertion by hand. The force required to fracture microneedles was found to increase with increasing wall thickness, wall angle, and possibly tip radius, in agreement with finite element simulations and a thin shell analytical model. For almost all geometries considered, the margin of safety, or the ratio of fracture force to insertion force, was much greater than one and was found to increase with increasing wall thickness and decreasing tip radius. Together, these results provide the ability to predict insertion and fracture forces, which facilitates rational design of microneedles with robust mechanical properties.
منابع مشابه
Microneedles for transdermal drug delivery.
The success of transdermal drug delivery has been severely limited by the inability of most drugs to enter the skin at therapeutically useful rates. Recently, the use of micron-scale needles in increasing skin permeability has been proposed and shown to dramatically increase transdermal delivery, especially for macromolecules. Using the tools of the microelectronics industry, microneedles have ...
متن کاملEffects of Rotational Motion in Robotic Needle Insertion
Background: Robotic needle insertion in biological tissues has been known as one the most applicable procedures in sampling, robotic injection and different medical therapies and operations.Objective: In this paper, we would like to investigate the effects of angular velocity in soft tissue insertion procedure by considering force-displacement diagram. Non-homogenous camel liver can be exploite...
متن کاملMonitoring the penetration process of single microneedles with varying tip diameters.
Microneedles represent promising tools for delivery of drugs to the skin. However, before these microneedles can be used in clinical practice, it is essential to understand the process of skin penetration by these microneedles. The present study was designed to monitor both penetration depth and force of single solid microneedles with various tip diameters ranging from 5 to 37µm to provide insi...
متن کاملInsertion Process of Ceramic Nanoporous Microneedles by Means of a Novel Mechanical Applicator Design.
Arrays of microneedles (MNAs) are integrated in an out-of-plane fashion with a base plate and can serve as patches for the release of drugs and vaccines. We used soft-lithography and micromolding to manufacture ceramic nanoporous (np)MNAs. Failure modes of ceramic npMNAs are as yet poorly understood and the question remained: is our npMNA platform technology ready for microneedle (MN) assembly ...
متن کاملCell Deformation Modeling Under External Force Using Artificial Neural Network
Embryogenesis, regeneration and cell differentiation in microbiological entities are influenced by mechanical forces. Therefore, development of mechanical properties of these materials is important. Neural network technique is a useful method which can be used to obtain cell deformation by the means of force-geometric deformation data or vice versa. Prior to insertion in the needle injection pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 37 8 شماره
صفحات -
تاریخ انتشار 2004